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Continuations: Our final topic!

Suppose expression E contains a subexpression S


The continuation of S in E consists of all of the steps needed to complete E 

after the completion of S


Example: (- 4 (+ 1 1))

‣ The subexpression S, (+ 1 1) is called the redex ("reducible expression")


‣ The continuation is (- 4 □) where □ takes the place of S


Example: (displayln (foo (bar (* 2 3))))

‣ The continuation of (bar (* 2 3)) is (displayln (foo □))



What is the continuation of (fact (sub1 n)) in the expression 

(* n (fact (sub1 n)))

A. (* n (fact (sub1 n)))

B. (* n (fact (sub1 □)))

C. (* n (fact □))

D. (* n □)

E. □
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A continuation is really a dynamic construct

A continuation is determined by the expression's evaluation context at run time


(define (fact n)

  (cond [(zero? n) 1]

        [else (* n (fact (sub1 n)))]))

At the point 1 is evaluated in the call (fact 0), the continuation is □

At the point 1 is evaluated in the call (fact 1), the continuation is (* 1 □)

At the point 1 is evaluated in the call (fact 2), the continuation is 

(* 2 (* 1 □))

Key: The continuation is all the rest of computation



Continuations can be quite complicated!

Starting with a positive integer n, construct a sequence where each successive 

term is obtained by the current term n


‣ If the current term n is 1, then stop.


‣ If the current term n is even, the next term is n/2


‣ If the current term n is odd, the next term is 3n+1


(The Collatz conjecture says that the sequence produced starting with any 

positive integer eventually stops.)




Continuations of the Collatz computation



Continuations of the Collatz computation

(define (collatz n)

  (cond [(= 1 n) '(1)]

        [(even? n) (cons n (collatz (/ n 2)))]

        [else (cons n (collatz (add1 (* 3 n))))]))

Continuations of '(1) in the call (collatz n) for several values of n



Continuations of the Collatz computation

(define (collatz n)

  (cond [(= 1 n) '(1)]

        [(even? n) (cons n (collatz (/ n 2)))]

        [else (cons n (collatz (add1 (* 3 n))))]))

Continuations of '(1) in the call (collatz n) for several values of n

‣ n = 1: □



Continuations of the Collatz computation

(define (collatz n)

  (cond [(= 1 n) '(1)]

        [(even? n) (cons n (collatz (/ n 2)))]

        [else (cons n (collatz (add1 (* 3 n))))]))

Continuations of '(1) in the call (collatz n) for several values of n

‣ n = 1: □

‣ n = 2: (cons 2 □)



Continuations of the Collatz computation

(define (collatz n)

  (cond [(= 1 n) '(1)]

        [(even? n) (cons n (collatz (/ n 2)))]

        [else (cons n (collatz (add1 (* 3 n))))]))

Continuations of '(1) in the call (collatz n) for several values of n

‣ n = 1: □

‣ n = 2: (cons 2 □)

‣ n = 3:  
(cons 3 (cons 10 (cons 5 (cons 16 (cons 8 (cons 4 (cons 2 □)))))))



Continuations of the Collatz computation

(define (collatz n)

  (cond [(= 1 n) '(1)]

        [(even? n) (cons n (collatz (/ n 2)))]

        [else (cons n (collatz (add1 (* 3 n))))]))

Continuations of '(1) in the call (collatz n) for several values of n

‣ n = 1: □

‣ n = 2: (cons 2 □)

‣ n = 3:  
(cons 3 (cons 10 (cons 5 (cons 16 (cons 8 (cons 4 (cons 2 □)))))))

‣ n = 4: (cons 4 (cons 2 □))



Continuations of the Collatz computation

(define (collatz n)

  (cond [(= 1 n) '(1)]

        [(even? n) (cons n (collatz (/ n 2)))]

        [else (cons n (collatz (add1 (* 3 n))))]))

Continuations of '(1) in the call (collatz n) for several values of n

‣ n = 1: □

‣ n = 2: (cons 2 □)

‣ n = 3:  
(cons 3 (cons 10 (cons 5 (cons 16 (cons 8 (cons 4 (cons 2 □)))))))

‣ n = 4: (cons 4 (cons 2 □))

‣ n = 5: (cons 5 (cons 16 (cons 8 (cons 4 (cons 2 □)))))



(define (length lst)

  (cond [(empty? lst) 0]

        [else (add1 (length (rest lst)))]))

What is the continuation at the point 0 is evaluated in the call 

(length '(a b c))

A. 3

B. (length lst)

C. (add1 (length □))

D. (add1 (add1 (add1 0)))

E. (add1 (add1 (add1 □)))
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Viewing continuations as procedures

We can view a continuation as a procedure of one argument


Example: (- 4 (+ 1 1))

‣ The continuation is (- 4 □) where □ takes the place of S


‣ (λ (x) (- 4 x))


Example: (displayln (foo (bar (* 2 3))))

‣ The continuation of (bar (* 2 3)) is (displayln (foo □))

‣ (λ (x) (displayln (foo x)))



Continuation-passing style

A new way to implement recursive procedures


‣ Each procedure has an extra continuation parameter typically called k


‣ The continuation k says what to do with the result



Continuation-passing style example
Summing numbers in a list

(define (sum-k lst k)

  (cond [(empty? lst) (k 0)]

        [else (sum-k (rest lst)

                     (λ (x) (k (+ x (first lst)))))]))

Two things to notice:


‣ In the base case, we call the continuation with our base value (k 0)


‣ In the recursive case, we pass a new continuation procedure that calls k with 

the result of adding x to the head of lst



Calling our function

What should we use as the top-level continuation when we call sum-k?


(define (sum-k lst k)

  (cond [(empty? lst) (k 0)]

        [else (sum-k (rest lst)

                     (λ (x) (k (+ x (first lst)))))]))

It depends what we want to do with it, typically, we'd want to return the value


‣ We can use (λ (x) x) which Racket predefines as identity

(sum-k '(1 2 3 4) identity) => 10



Compare with accumulator-passing style

(define (sum-k lst k)

  (cond [(empty? lst) (k 0)]

        [else (sum-k (rest lst)

                     (λ (x) (k (+ x (first lst)))))]))

(define (sum-a lst acc)

  (cond [(empty? lst) acc]

        [else (sum-a (rest lst) (+ acc (first lst)))]))

In CPS, the extra parameter is a procedure that says what to do with the result 

of the computation


In APS, the extra parameter is the intermediate value in the computation



CPS guidelines

Continuations are procedures with 1 argument which is the result of recursive 

call


The recursive procedure has a continuation parameter, k


The continuation argument is applied to every branch of computation (think 

base case and recursive case)


At the top-level, the continuation is usually identity


Recursive calls must be tail-recursive



Reverse in CPS

(define (reverse-k lst k)

  (cond [(empty? lst) (k empty)]

        [else (reverse-k (rest lst)

                         (λ (x) (k (append x (list (first lst))))))]))

Note: this is spectacularly inefficient


‣ (reverse lst) takes time O(n) where n is the length of the list


‣ (reverse-k lst identity) takes time O(n2)



Append in CPS

(define (append-k lst1 lst2 k)

  (cond [(empty? lst1) (k lst2)]

        [else (append-k (rest lst1)

                        lst2

                        (λ (x) (k (cons (first lst1) x))))]))



Comparing append in CPS to normal recursion

(define (append-k lst1 lst2 k)

  (cond [(empty? lst1) (k lst2)]

        [else (append-k (rest lst1)

                        lst2

                        (λ (x) (k (cons (first lst1) x))))]))

(define (append lst1 lst2)

  (cond [(empty? lst1) lst2]

        [else (cons (first lst1)

                    (append (rest lst1) lst2))]))

In append, the continuation of the recursive call is (cons (first lst1) □) plus 

all of the other earlier recursive calls (example on next slide)


This is identical to the passed-in continuation in append-k where k is the other 

recursive calls



Continuation example
Appending '(1 2 3) to '(a b c)

Step lst1 append's recursive continuation k argument to append-k's recursive call (expanded)

0 '(1 2 3) (cons 1 □) (λ (x) (k (cons 1 x)))

1 '(2 3) (cons 1 (cons 2 □)) (λ (x) (k (cons 1 (cons 2 x))))

2 '(3) (cons 1 (cons 2 (cons 3 □) (λ (x) (k (cons 1 (cons 2 (cons 3 x)))))

3 '() — —

‣ append's continuations also include the top-level continuation the table omits


‣ k in append-k's recursive calls aren't expanded, they're the closure 

(λ (x) (k (cons (first lst1) x))) with k bound to the previous closure 

and lst1 bound to the corresponding lst1 argument in the table


‣ CPS makes the continuations explicit



So what good is this?

Programming with explicit continuations gives you a lot of control


‣ E.g., you can ignore the continuation that is built up and do something else!


Consider our standard sum procedure


(define (sum lst)

  (cond [(empty? lst) 0]

        [else (+ (first lst) (sum (rest lst)))]))


Suppose we want to modify this to return #f if lst contains an element that 

isn't a number



Failed attempt

(define (sum lst)

  (cond [(empty? lst) 0]

        [(not (number? (first lst))) #f]

        [else (+ (first lst) (sum (rest lst)))]))


If we call this with '(1 2 3 steve 4), then at some point, the else condition 

will attempt to add 3 and 'steve and crash!



A working attempt with CPS

Since CPS uses tail-recursion, we can ignore our built-up continuation and 

return #f


(define (sum-k lst k)

  (cond [(empty? lst) (k 0)]

        [(not (number? (first lst))) #f]

        [else (sum-k (rest lst)

                     (λ (x) (k (+ x (first lst)))))]))

(sum-k '(1 2 3 steve 4) identity) => #f



A better approach

We can use an error continuation


‣ This lets the caller decide what to do with the error


(define (sum-k lst k err)

  (cond [(empty? lst) (k 0)]

        [(not (number? (first lst))) (err (first lst))]

        [else (sum-k (rest lst)

                     (λ (x) (k (+ x (first lst))))

                     err)]))

> (sum-k '(1 2 3 steve 4)

         identity

         (λ (bad) (printf "Bad element: ~s\n" bad)))

Bad element: steve



Some more CPS examples

map-k: CPS version of map


collatz-k: CPS version of collatz


fib-k: CPS version of fib


map-k-k: CPS version of map that takes a CPS f


